The Curiosity rover took this image on September 10 of a rock formation informally dubbed “Darwin,” first noted from the orbiting spacecraft. Scientists had the rover stop in this region, called Waypoint 1, because it appears to be a prime area to study the inner makeup and history of the floor of the Gale Crater. Analysis of Darwin may provide evidence of whether and how water played a role in the layering of rocks in this region. The rover touched down on Mars on the morning of August 6, 2012, with a mission to explore Gale Crater, which was thought to have once hosted flowing water, and find out if that environment was once habitable. The 2,000-pound rover Curiosity landed on Mars on August 6, 2012, and has been sending back fascinating images and data ever since. Curiosity recently began a trek toward Mount Sharp after spending more than six months in the “Glenelg” area. This image was taken on July 16, after the rover passed the 1 kilometer mark for the total distance covered since the start of the mission. It still has over 8 kilometers (5 miles) to cover before reaching Mount Sharp, which will take several months. The lower slopes of Mount Sharp are visible at the top of this image, taken on Tuesday, July 9. The turret of tools at the end of the rover’s arm, including the rock sampling drill in the lower left corner, can also be seen. This image taken by the rover on Monday, July 8, shows the tracks left behind after its first drive away from the “Glenelg” area, covering roughly 60 feet. Curiosity drilled into the rock target, called “Cumberland,” on May 19, and collected a powdered sample of material from the rock’s interior. The sample will be compared to an earlier drilling at the “John Klein” site, which has a similar appearance and is about nine feet away. Mars once had conditions favorable for microbial life, NASA scientists announced Tuesday, March 12, 2013. One piece of evidence for that conclusion comes from this area of the Martian surface, nicknamed “Sheepbed.” It shows veins of sediments that scientist believe were deposited under water and was an environment once hospitable to life. The rock on the left, called Wopmay, was discovered by the rover Opportunity, which arrived in 2004 on a different part of Mars. Iron-bearing sulfates indicate that this rock was once in acidic waters. On the right are rocks from Yellowknife Bay, where rover Curiosity is situated. These newly discovered rocks are suggestive of water with a neutral pH, which is hospitable to life formation. NASA’s Curiosity rover shows the first sample of powdered rock extracted by the rover’s drill. In subsequent steps, the sample will be sieved to be analyzed. The image was taken by Curiosity’s mast camera on Wednesday, February 20. The rover drilled this hole, in a rock that’s part of a flat outcrop researchers named “John Klein,” during its first sample drilling on Mars on February 8. The latest self-portrait of the rover combines dozens of images taken by the rover’s Mars Hand Lens Imager (MAHLI) on February 3. NASA’s Mars rover Curiosity has taken its first set of nighttime photos, including this image of Martian rock illuminated by ultraviolet lights. Curiosity used the camera on its robotic arm, the Mars Hand Lens Imager, to capture the images on January 22. Another nighttime image includes this rock called Sayunei in the Yellowknife Bay area of Mars’ Gale Crater. Curiosity’s front-left wheel had scraped the rock to inspect for fresh, dust-free materials in an area where drilling for rock soon will begin. Other night photos includes this image of the calibration target for the Mars Hand Lens Imager camera at the end of the rover’s robotic arm. For scale, a penny on the calibration target is three-fourths of an inch in diameter. A view of what NASA describes as “veined, flat-lying rock” selected as the first drilling site for the Mars rover taken on January 10. Curiosity used a dust-removal tool for the first time to clean this patch of rock on the Martian surface on January 6. The rover captured this mosaic of images of winding rocks known as the Snake River on December 20, 2012. A view of the shallow depression known as “Yellowknife Bay,” taken by the rover on December 12, 2012. The Mars rover Curiosity recorded this view from its left navigation camera after an 83-foot eastward drive on November 18, 2012. The view is toward “Yellowknife Bay” in the “Glenelg” area of Gale Crater. Three “bite marks” made by the rover’s scoop can be seen in the soil on Mars surface on October 15, 2012. The robotic arm on NASA’s Mars rover Curiosity delivered a sample of Martian soil to the rover’s observation tray for the first time on October 16, 2012. This image shows part of the small pit or bite created when NASA’s Mars rover Curiosity collected its second scoop of Martian soil on October 15, 2012. The rover team determined that the bright particle near the center of the image was native to Mars, and not debris from the rover’s landing. This image shows what the rover team has determined to be a piece of debris from the spacecraft, possibly shed during the landing. The rover’s scoop contains larger soil particles that were too big to filter through a sample-processing sieve. After a full-scoop sample had been vibrated over the sieve, this portion was returned to the scoop for inspection by the rover’s mast camera. This 360-degree panorama shows the area where the rover will spend about three weeks collecting scoopfuls of soil for examination. The photo comprises images taken from the rover’s navigation camera on October 5, 2012. An area of windblown sand and dust downhill from a cluster of dark rocks has been selected as the likely location for the first use of the scoop on the arm of NASA’s Mars rover Curiosity. Curiosity cut a wheel scuff mark into a wind-formed ripple at the “Rocknest” site on October 3, 2012. This gave researchers a better opportunity to examine the particle-size distribution of the material forming the ripple. NASA’s Curiosity rover found evidence for what scientists believe was an ancient, flowing stream on Mars at a few sites, including the rock outcrop pictured here. The key evidence for the ancient stream comes from the size and rounded shape of the gravel in and around the bedrock, according to the Jet Propulsion Laboratory/Caltech science team. The rounded shape leads the science team to conclude they were transported by a vigorous flow of water. The grains are too large to have been moved by wind. This photos shows an up-close look at an outcrop that also shows evidence of flowing water, according to the JPL/Caltech science team. The outcrop’s characteristics are consistent with rock that was formed by the deposition of water and is composed of many smaller rounded rocks cemented together. Water transport is the only process capable of producing the rounded shape of conglomerate rock of this size. Curiosity completed its longest drive to date on September 26, 2012. The rover moved about 160 feet east toward the area known as “Glenelg.” As of that day the rover had moved about a quarter-mile from its landing site. This image shows the robotic arm of NASA’s Mars rover Curiosity with the first rock touched by an instrument on the arm. The photo was taken by the rover’s right navigation camera. This image combines photographs taken by the rover’s Mars Hand Lens Imager at three distances from the first Martian rock that NASA’s Curiosity rover touched with its arm. The images reveal that the target rock has a relatively smooth, gray surface with some glinty facets reflecting sunlight and reddish dust collecting in recesses in the rock. This rock will be the first target for Curiosity’s contact instruments. Located on a turret at the end of the rover’s arm, the contact instruments include the Alpha Particle X-Ray Spectrometer for reading a target’s elemental composition and the Mars Hand Lens Imager for close-up imaging. Researchers used the Curiosity rover’s mast camera to take a photo of the Alpha Particle X-Ray Spectrometer. The image was used to see if it had been caked in dust during the landing. Researchers also used the mast camera to examine the Mars Hand Lens Imager (MAHLI) on the rover to inspect its dust cover and check that its LED lights were functional. In this image, taken on September 7, 2012, the MAHLI is in the center of the screen with its LED on. The main purpose of Curiosity’s MAHLI camera is to acquire close-up, high-resolution views of rocks and soil from the Martian surface. This is the open inlet where powdered rock and soil samples will be funneled down for analysis. The image is made up of eight photos taken on September 11, 2012, by MAHLI and is used to check that the instrument is operating correctly. This is the calibration target for the MAHLI. This image, taken on September 9, 2012, shows that the surface of the calibration target is covered with a layor of dust as a result of the landing. The calibration target includes color references, a metric bar graphic, a penny for scale comparison, and a stair-step pattern for depth calibration. This view of the three left wheels of NASA’s Mars rover Curiosity combines two images that were taken by the rover’s Mars Hand Lens Imager on September 9, 2012, the 34th day of Curiosity’s work on Mars. In the distance is the lower slope of Mount Sharp. This view of the lower front and underbelly areas of NASA’s Mars rover Curiosity was taken by the rover’s Mars Hand Lens Imager. Also visible are the hazard avoidance cameras on the front of the rover. The penny in this image is part of a camera calibration target on NASA’s Mars rover Curiosity. The image was taken by the Mars Hand Lens Imager camera. The rover captured this mosiac of a rock feature called ‘Snake River” on December 20, 2012. The reclosable dust cover on Curiosity’s Mars Hand Lens Imager was opened for the first time on September 8, 2012, enabling MAHLI to take this image. The Curiosity rover used a camera located on its arm to obtain this self-portrait on September 7, 2012. The image of the top of Curiosity’s Remote Sensing Mast, showing the Mastcam and Chemcam cameras, was taken by the Mars Hand Lens Imager. The angle of the frame reflects the position of the MAHLI camera on the arm when the image was taken. The left eye of the Mast Camera on NASA’s Mars rover Curiosity took this image of the rover’s arm on Wednesday, September 5, 2012. Sub-image one of three shows the rover and its tracks after a few short drives. Tracking the tracks will provide information on how the surface changes as dust is deposited and eroded. Sub-image two shows the parachute and backshell, now in color. The outer band of the parachute has a reddish color. Sub-image three shows the descent stage crash site, now in color, and several distant spots (blue in enhanced color) downrange that are probably the result of distant secondary impacts that disturbed the surface dust. An image released August 27, 2012. was taken with Curiosity rover’s 100-millimeter mast camera, NASA says. The image shows Mount Sharp on the Martian surface. NASA says the rover will go to this area. The Mars rover Curiosity moved about 15 feet forward and then reversed about 8 feet during its first test drive on August 22, 2012. The rover’s tracks can be seen in the right portion of this panorama taken by the rover’s navigation camera. NASA tested the steering on its Mars rover Curiosity on August 21. Drivers wiggled the wheels in place at the landing site on Mars. Curiosity moved its robot arm on August 20, for the first time since it landed on Mars. “It worked just as we planned,” said JPL engineer Louise Jandura in a NASA press release. This picture shows the 7-foot-long arm holding a camera, a drill, a spectrometer, a scoop and other tools. The arm will undergo weeks of tests before it starts digging. With the addition of four high-resolution Navigation Camera, or Navcam, images, taken on August 18, Curiosity’s 360-degree landing-site panorama now includes the highest point on Mount Sharp visible from the rover. Mount Sharp’s peak is obscured from the rover’s landing site by this highest visible point. This composite image, with magnified insets, depicts the first laser test by the Chemistry and Camera, or ChemCam, instrument aboard NASA’s Curiosity Mars rover. The composite incorporates a Navigation Camera image taken prior to the test, with insets taken by the camera in ChemCam. The circular insert highlights the rock before the laser test. The square inset is further magnified and processed to show the difference between images taken before and after the laser interrogation of the rock. An updated self-portrait of the Mars rover Curiosity, showing more of the rover’s deck. This image is a mosiac compiled from images taken from the navigation camera. The wall of Gale Crater, the rover’s landing site, can be seen at the top of the image. This image shows what will be the rover’s first target with it’s chemistry and camera (ChemCam) instrument. The ChemCam will fire a laser at the rock, indicated by the black circle. The laser will cause the rock to emit plasma, a glowing, ionized gas. The rover will then analyze the plasma to determine the chemical composition of the rock. This is a close-up of the rock that will be the ChemCam’s first target. This image, cropped from a larger panorama, shows an area, near the rover’s rear left wheel, where the surface material was blown away by the descent-stage rockets. This image, with a portion of the rover in the corner, shows the wall of Gale Crater running across the horizon at the top of the image. This image, taken from the rover’s mast camera, looks south of the landing site toward Mount Sharp. This partial mosaic from the Curiosity rover shows Mars’ environment around the rover’s landing site on Gale Crater. NASA says the pictured landscape resembles portions of the U.S. Southwest. The high-resolution mosaic includes 130 images, but not all the images have been returned by the rover to Earth. The blackened areas of the mosaic are the parts that haven’t been transmitted yet.
See more on this panaroma on NASA’s site. In this portion of the larger mosaic from the previous frame, the crater wall can be seen north of the landing site, or behind the rover. NASA says water erosion is believed to have created a network of valleys, which enter Gale Crater from the outside here. In this portion of the larger mosaic from the previous frame, the crater wall can be seen north of the landing site, or behind the rover. NASA says water erosion is believed to have created a network of valleys, which enter Gale Crater from the outside here. Two blast marks from the descent stage’s rockets can be seen in the center of this image. Also seen is Curiosity’s left side. This picture is a mosaic of images taken by the rover’s navigation cameras. A color image from NASA’s Curiosity rover shows the pebble-covered surface of Mars. This panorama mosaic was made of 130 images of 144 by 144 pixels each. Selected full frames from this panorama, which are 1,200 by 1,200 pixels each, are expected to be transmitted to Earth later. A panoramic photograph shows the Curiosity rover’s surroundings at its landing site inside Gale Crater. The rim of Gale Crater can be seen to the left, and the base of Mount Sharp is to the center-right. A partial view of a 360-degree color panorama of the Curiosity rover’s landing site on Gale Crater. The panorama comes from low-resolution versions of images taken Thursday, August 9, with a 34-millimeter mast camera. Cameras mounted on Curiosity’s remote sensing mast have beamed back fresh images of the site. NASA’s Curiosity rover took this self-portrait using a camera on its newly deployed mast. A close-up view of an area at the NASA Curiosity landing site where the soil was blown away by the thrusters during the rover’s descent on August 6. The excavation of the soil reveals probable bedrock outcrop, which shows the shallow depth of the soil in this area. This color full-resolution image showing the heat shield of NASA’s Curiosity rover was obtained during descent to the surface of Mars on Monday, August 13. The image was obtained by the Mars Descent Imager instrument known as MARDI and shows the 15-foot diameter heat shield when it was about 50 feet from the spacecraft. This first image taken by the Navigation cameras on Curiosity shows the rover’s shadow on the surface of Mars. The color image captured by NASA’s Mars rover Curiosity on Tuesday, August 7, has been rendered about 10% transparent so that scientists can see how it matches the simulated terrain in the background. This image comparison shows a view through a Hazard-Avoidance camera on NASA’s Curiosity rover before and after the clear dust cover was removed. Both images were taken by a camera at the front of the rover. Mount Sharp, the mission’s ultimate destination, looms ahead. The four main pieces of hardware that arrived on Mars with NASA’s Curiosity rover were spotted by NASA’s Mars Reconnaissance Orbiter. The High-Resolution Imaging Science Experiment camera captured this image about 24 hours after landing. This image is a 3-D view in front of NASA’s Curiosity rover. The anaglyph was made from a stereo pair of Hazard-Avoidance Cameras on the front of the rover. Mount Sharp, a peak that is about 3.4 miles high, is visible rising above the terrain, though in one “eye” a box on the rover holding the drill bits obscures the view. This view of the landscape to the north of NASA’s Mars rover Curiosity was acquired by the Mars Hand Lens Imager on Monday afternoon on the first day after landing. This view of the landscape to the north of NASA’s Mars rover Curiosity was acquired by the Mars Hand Lens Imager on Monday afternoon, the first day after landing. This is one of the first pictures taken by Curiosity after it landed. It shows the rover’s shadow on the Martian soil. Another of the first images taken by the rover. The clear dust cover that protected the camera during landing has popped open. Part of the spring that released the dust cover can be seen at the bottom right, near the rover’s wheel. This image shows Curiosity’s main science target, Mount Sharp. The rover’s shadow can be seen in the foreground. The dark bands in the distances are dunes. Another of the first images beamed back from NASA’s Curiosity rover on August 6 is the shadow cast by the rover on the surface of Mars. NASA’s Mars Curiosity Rover, shown in this artist’s rendering, touched down on the planet on August 6, 2012. Photos: Mars rover Curiosity
Photos: Mars rover Curiosity
Photos: Mars rover Curiosity
Photos: Mars rover Curiosity
Photos: Mars rover Curiosity
Photos: Mars rover Curiosity
Photos: Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Photos: Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
mars .2a
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
Mars rover Curiosity
STORY HIGHLIGHTS
- Mars rover Curiosity heated up soil to get water vapor
- Astronauts may some day be able to use this as a water source
- Scientists have identified two main soil types in Gale Crater
(CNN) — Scoop up some soil on Mars, heat it up, cool down the steam and … slurp, slurp! You’ve got water!
Mars might appear dry as a desert, but astronauts may someday be able to tap its soil to quench their thirst. Research recently published suggests that the dust from the Martian’s surface contains about 2% water by weight.
This is one of several insights emerging from data that the Mars rover Curiosity has been collecting. Five studies in the journal Science were published last week based on data from the rover’s first 100 days on the Red Planet.
“The community w
7000
as surprised that there was a large amount of water trapped in the … Martian soil,” said Chris Webster, manager of NASA’s Planetary Sciences Instruments Office.
Curiosity, representing a $2.5 billion NASA mission, has been on Mars since it made a dramatic landing there August 6, 2012. Earthlings celebrated as the two-ton rover arrived, carrying with it the most sophisticated suite of instruments and cameras to explore the surface of another planet.
200,000 people apply to live on Mars
Men are from Mars, and women are too?
Thanks to Curiosity, scientists now know more than ever about the composition of the Martian soil.
“It’s the first time that the soil has been analyzed at this level of accuracy,” Webster said.
Turning on the faucet
The rover’s Sample Analysis at Mars (SAM) instrument helped scientists probe the soil by heating a sample up to 835 degrees Celsius.
The gases that came off included oxygen and chlorine as well as water vapor. Based on the ratio of isotopes within, scientists believe this water is coming from the recent Martian atmosphere.
“If you take about a cubic foot of dirt with the amount of water that we found and heated it up, you could get a couple of pints of water out of that,” said Laurie Leshin, dean of science at Rensselaer Polytechnic Institute in New York, who led this study. “It was kind of exciting to me to see that, wow, it would be a significant amount.”
More broadly, the analysis gives us new information about the hydrological cycle on Mars, said John Grotzinger, lead scientist on the Curiosity mission.
“Somehow, there’s a process on Mars where, even though there are just trace quantities of water in Mars’s atmosphere, this noncrystalline material is able to absorb it like a sponge and bind it into its framework,” Grotzinger said.
The technical details about how future astronauts would use the soil as a resource for water haven’t been worked out, Webster said. A condenser would be required to cool the water steam into a liquid form after heating up the soil. But from what we know so far, he said, it would be drinkable.
“This is a reservoir for water on Mars that we had not really appreciated before,” Grotzinger said.
More than 100,000 want to go to Mars and not return
Soil types
Scientists are also learning about the diversity of the soil on Mars.
Pierre-Yves Meslin, a scientist at Universite de Toulouse in Toulouse, France, and colleagues used data from an instrument that fires a laser to analyze the soil and rock on Mars. It’s called the ChemCam Remote Micro-Imager.
One main soil type on Mars, they said, is made of fine-grained particles and carries a significant amount of hydrogen. Scientists say this reflects the dust that covers the whole Martian surface. The dust that covers Mars is more akin to a fine sand than the fluffy film on the floors of neglected attics on Earth, Webster said.
The other main soil type was coarse and is local to Gale Crater, the area where the rover is exploring. These particles, up to 1 millimeter in size, reflects what rocks in this area are made of.
Previous rovers — Pathfinder, Spirit and Opportunity – had less sophisticated technology to analyze soil but their insights about the mineral composition of the Martian soil are similar to what Curiosity found, Meslin said.
With ChemCam and Curiosity’s other instruments, the latest rover can give scientists a deeper understanding of the composition, as well as how this soil was formed.
Complications with organics
New scientific insights also present the issue of chemical compounds that may complicate the search for life on Mars.
Curiosity is not capable of detecting life directly; it wouldn’t confirm either modern life or ancient fossil organisms. It can, however, determine if the ancient environment was habitable — which the rover told us it was — and look for organic compounds.
Finding those compounds wouldn’t prove the existence of life, either, because they can come from other sources. But the appearance of organic molecules would suggest that the environment is good at preserving them.
The release of chlorine and oxygen when the rover heated up soil suggests the presence of a chemical called perchlorate, at a 0.5% level in the soil, Leshin said. This substance can destroy organic carbon in a chemical reaction when the rover heats up soil. And so far, Curiosity has not directly detected organics in the soil.
Potentially the rover could avoid this problem using alternative techniques, which wouldn’t heat the soil so much that perchlorates break down.
“Perchlorate is reacting with some organic compound to produce these simple molecules,” Grotzinger said. “It leaves us asking the question: Is this from Mars, or is it something we brought with us? And right now we don’t know.”
Perchlorate in the planet’s abundant dust could present a toxicity problem to humans on Mars; on Earth, it’s known to cause thyroid problems, Leshin said.
The dust could generally pose a health problem as well — both physically interfering with respiration and being a chemical hazard. Mars is known to have massive dust storms.
“It’s one of the significant concerns to human exploration,” Webster said.
Still no methane
Scientists are interested in whether Mars has methane gas, which could be an indicator of the planet’s habitability. About 90% to 95% of the methane in Earth’s atmosphere is biologically derived, said Sushil Atreya, a University of Michigan researcher and co-investigator for SAM, said in November 2012.
But the rover still has not detected methane gas, as scientists noted in Science earlier in September.
Even if there were methane, nonbiological sources such as volcanic activity can produce it.
It’s still possible that methane will turn up in future measurements, however, Webster said.
Studies: Martian atmosphere was destroyed long ago
Where it’s going now
Curiosity is about one-fifth of the way to Mount Sharp, its final destination, where it will climb while testing the peak’s sedimentary layers that have formed over time. Mount Sharp is 3.4 miles high, and its rock layers represent a series of chapters of the planet’s history and the environmental conditions present in various eras.
Along the way, the rover stopped at a location called Waypoint 1, where scientists found a conglomerate rock that would have been found in an ancient stream bed. The rock with the pebbles has strange veins, filled with material that scientists don’t quite understand.
“The implication of that is that again we’re seeing the involvement of water, and it looks like this water was very widespread across the landing area,” Grotzinger said.
It appears that the river would have extended from the rover’s landing site all the way to Waypoint 1. The entire area that Curiosity has been driving across would have been covered by a stream bed, at one point or another, in the ancient history of Mars.
Curiosity isn’t the only moving human-made object on Mars. The Opportunity rover, which launched in 2004, is still chugging along.
In 2020, NASA plans to send an even more advanced rover to “explore and assess Mars as a potential habitat for life, search for signs of past life, collect carefully selected samples for possible future return to Earth, and demonstrate technology for future human exploration of the Red Planet.”
NASA recently announced a competition for proposals of what instruments the 2020 rover could carry.
It, too, may get humans closer to drinking water, and possibly even showering, on Mars.
Follow Elizabeth Landau on Twitter at @lizlandau
via Arne Ruhnau News http://arneruhnau.com/secrets-of-martian-soil-finally-unlocked/
No comments:
Post a Comment